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For the traction boundary value problem in nonlinear elastostatics
for a body which is convex in its undeformed reference state and with the
assumption of sufficiently small strains (but not necessarily small dis-

placement gradients), an upper bound is obtained for the elastic strain

ok

energy in terms of the L_-integral norms of the surface tractions and body

2
forces with the constant depending only upon the ratio of the outer and
inner diameters and the physical constants of the material.

This result extends previous known results in linear elasticity
(infinitesimal displacement gradients) and finite elasticity (small but

finite displacement gradients) into the small strain theory of nonlinear

elasticity.
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SIGNIFICANCE AND EXPLANATION

Suppose that an elastic body is in a natural stress-free state and is
then deformed by the action of applied surface tractions and internal body
forces. This situation is described mathematically by a set of highlwy
complex nonlinear partial differential equations.

In order to simplify the equations, it is often assumed that, with the
possible exception of a rigid body motion, each point in the undeformed
body has been displaced only an infinitesimal amount (linear elasticity) or,
more generally, by a finite but small amount (finite elasticity).

However, there are many situations in which points in the body undergo
relatively large displacements, all of which can not be included in a single
rigid motion of the body, and yet the strains produced are relatively small.
This is true for example in the case of long thin bodies.

Therefore, it is desirable to obtain results using only the assumption
that the strains are small (but finite) while the displacements and displace-
ment gradients are relatively large. 1In the present research, an upper
bound for the energy in the body in terms of the surface tractions and body
forces is obtained using only the small strain assumption whereas previous

similar results had been obtained under the assumptions of linear or finite

elasticity. This result is therefore applicable in many cases where the q
: Section
previous results were not. ooc Butf Section [
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AN INTEGRAL BOUND ON THE STRAIN ENERGY FOR THE TRACTION
PROBLEM IN NONLINEAR ELASTICITY WITH SMALL STRAINS

Joseph J. Roseman”
1. INTRODUCTION.

An elastic isotropic and homogeneous body is assumed to possess a natural stress-
free state in which it occupies a convex domain DR C E3. It is then subjected to the
combined action of applied surface tractions and internal body forces and arrives at
a new equilibrium state in a domain 0. Using standard equations of nonlinear elasto-
statics and working in the context of small strain theory, we shall derive an estimate
for the strain energy in the deformed body in terms of the L2 integral norms of tre
surface tractions and the body forces with the constants involved depending upon the
material properties and upon the geometry of the domain. The estimate is similar to
one previously obtained by Bramble and Payne (1] in the context of linear elasticity
and by Breuer and Roseman [2] in the context of finite elasticity.

The theory of mathematical elastostatics (cf. [3], [4]) assumes that the deforma-
tion from DR to D can be described mathematically as a smcoth one to one mapping
from the domain DR onto the domain U and that there is a relation between the
geometric strain associated with the mapping and the stress in the deformed state.

The fact that the deformed body is in equilibrium imposes conditions on the stress
tensor which in turn leads to a set of second order nonlinear elliptic partial differ-
ential equations for the mapping vector function. These equations, together with the
known conditions at the boundary, constitute an elliptic boundary value problem.

The equations of classical linear elastostatics are obtained by a linearization

of this nonlinear system, a linearization which is, in effect, equivalent to treating

*
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the derivatives of the displacement vector (the displacement bwing the difference
between the position of a point in [’ and its former position in PR) as infinitesi-
mally small quantities. 1In theory, therefore, the cquations of linear c¢lasticity
describe the physical model only for infinitesimally small motions, although expericnce
has shown that they give good results in many applications.

In the theory of finite elasticity, it is assumed that the displacement gradients
are sufficiently small, depending upon the geometry of the body and the material con-
stants, but not infinitesimal. Finite elasticity should therefore provide a more accu-
rate mathematical description of the physical model than lincar elasticity and results
in finite elasticity theory concerning existence, uniqueness and continuous dependence
on the given data would, at the least, be valid wherever linear elasticity results are
valid,

However, as Fritz John [5] points out, in practice it is possible to have small
strains and relatively large displacement gradients, especially in thin rods or shells
(indicating large relative "rotation" of different parts of the body). Thus, it would
be especially meaningful to obtain results based on the nonlinear equations assuming
only that the strains are sufficiently small (but not infinitesimal), while the dis-
placement gradients are bounded but are permitted to be large in comparison with the
strains. That is what is done in this paper.

The techniques employed here are a refinement of those used in [2] and can be
extended in a straightforward manner to non-isotropic and non-homogeneous bodies. The
convexity requirement on DR is imposed in order to ensure the applicability of some
work of F. John {6], [7] on the relationship between rotation and strain and can be

relaxed somewhat.

Other results concerning bounds for the strain energy in elastostatics in terms of
the given data include (1], (81, [9], [10] in linecar elasticity, {21, [11}, [12] in finite
elasticity, and [13] for the displacement boundary value problem in nonlincar elasticity

with small strains.* A description of some of the above mentioned results is given in [14].

*In both (13] and (14), the results in [13] are described as heing within the framework
of finite elasticity, However, the analysis in [13] actually requires only an a priori
assumption of small strains within the elastic body.
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2. PRELIMINARIES.

In the aksence of surface tractions or internal body forces, an isotropic, homo-
geneous elastic body occupies a convex domain DR C 33 with inner and outer diameters
d and D respectively and with a boundary, EDR, which is at least smooth enough for
the application of the divergence theorem. Under the action of a system of known body
forces and surface tractions, UR is mapped onto a domain [ with boundary 30 with
a point (xl,xz,x3) in DR being taken to the point (yl,y2,y3) in D. After defor-
mation, the body is in static equilibrium and the mapping from DR to D is assumed
to be one to one and sufficiently smooth,

The displacement vector Uy is definel as
u, = y. ~ X, (2.1)

and, since the mapping is one to one, u, may be regarded as a function of either
(xl,xz,x3) or (y1,Y2:Y3)-

We next define*

Byi Bui
Py = 7 =6, + T—, (2.2)
ik dxk ik Bxk
. X,
pt =, (2.3)
Yk
= = 2.4
Iik = P3iPyx T ki ¢ 2.4)

. s o1a ki
glk = PlJPkJ =g b (2.5)

ik s . .
The tensors pik and p are, respectively, the covariant and contravariant

tensors, 9y and glk are the covariant and contravariant metric tensors, and Sik
i

is the Kronecker delta (identity tensor).

*Tensor notation is used throughout the paper and all indices may take on the values
1, 2 and 3. The summation convention is followed so that a repeated index in any term
is summed over all values of the index. The magnitudes of a (real) vector v, and

matrix b, are defined here as |v| = Y v v, and [bl =/Lip, b, .
ik ii 3 Tik ik
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We have the relations

i3 ik .
=n = (0.0
P ij Iijp ik (..
and
ij _ jk _ . P
g9 gjk qijq ik L

There are several definitions in the literature for the strain tensor in nonlinerar

elasticity. One of the more common, which we shall use here, is

From (2.2) and (2.4), this is eguivalent to

1 3ui 3uk du, su,
== (24 X, ) _ 2

®ik T 2 (ax * Ax, * Ik, x ) ! (2.9)
k i i k

or, in terms of ¥y coordinates,

1 Bui auk A, hui Ju, Su aun Bun
®ix -2 (ay ay. | Pmk Ty 3y.  Pmi ayJ 3y, T P3iPmk 3y, 3y )
k i m j m 3j j m

(2.1
The medium 1s assumed to be hyperelastic, i.e. it possesses a positive definite

strain energy density function W = W(e) which has the properties that for every

G C D whose undeformed preimage is GR C DR' the strain energy in G, U(G), is

given by
UGy = [ff wie)dx ax_ax 2.11)
1772573
G
R
and
Wie) = pe, e + le e + o(ez) (2.12)
Y ik®ix T 7 1%k ’ e

where 0(e3) is a smooth term of order of magnitude |e|3 with a derivative of order
|e|2 for small |e] and A and u are positive material constants.
In addition, there exist material constants m and M such that
m|e|2 < W) ;M|e|2 (2.13)

if le| is sufficiently small.
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The stress at any point in U is represented by the Cauchy stress tensor ’Vik
which has the property that for any differential surface element 4S5 in 7 with un:it
normal vector vy the components of force on this element are rikvkds.

The body in the deformed state is in equilibrium under the action of the body

forces per unit volume Fi and surface tractions ({(force/area) Ti'

The tensor Tik satisfies the equations

OTix
= -F_, y, e D, (Z.14a)
3y i i
k
and the boundary conditions
= 3 2. )
Tl = T Y, € v, (2.14r)

where n, is the outward unit normal to 3D.

The existence of the strain energy density function W(e) implies the following

relation between T, and e, :
ik ik
1 W{e)
T o= P, ——, (2.15a)
ik  det(p) “km apim
(cf. Stoker (3, pp. 10~14})or, from (2.4) and (2.8),
_ 1 ELACY -
Tik © 3et(p) PinPxm Be (2-158)
nm
Equation (2.15b) shows that the tensor < is symmetric (because e, is

ik ik

symmetric).
For the problem considered here, it is assumed a priori that, throughout D, e:
is sufficiently small with respect to the geometry of DR and the material constants;

more precisely we assume that

el < 6@’ 2.16)

with § sufficiently small depending upon the material.
However, the only restrictions that we require on the displacement gradients are

that the mapping from DR to D be one-to-one, that the magnitudes of the matrices

G-




ik

pik' P, gik and glk and their determinants be less than or equal to two in

absolute value, and that 0

in the theorem below.

satisfy some mild geometric requirements, which are stated

i




3. THE CINERGY BOUND.
We now state the main theorem: Consider an elastic, isotropic body which rossesses
a stress-free reference state in whi<h it is homogeneous and occupies a convex domain
3 X . . . -
DR CE with inner and outer diameters d and D respectively. 3Suppose that the body
is subjected to internal and external forces and reaches a state of static equilibrium
: . . . : - 3 . . - :
in which it occupies a domain | ) with internal bod, forces ¥, (force/unit volume)
i

throughout D and surface tractions Ti (force/unit area) on ?, the boundary of O,

Assume that each point (x, ,x_,x.) in

1°%50 %, e is mapped to a point (o, ,v.) in

1
D in a smooth, one to one manncr, that the magnitudes of the covariant and —ontra-
variant Jacobian and metric matrices and the determinants of these matrices are bounded
in absolute value at every point by two, and that the strain matrix satisfics (2.16).
Suppose that 70 has continuous curvature with maximum principal survature not
greater than 32/d and that at every point on ! there exists a sphere of radius d/64

which is tangent to the surface at the point and whose interior lies entircly within

D. 1In addition, there exists a point in [, which is taken to be the origin, with th
2

properties that the interior of the sphere ; Y T is contained in ) and

yini/V Yy Yy Z- % for all (yl,Y2,73) on +D, where n is the outward unit normal
vector.

Assume that there exists a strain energy density function for thc material which
satisfies the relations (2.12) and (2.13).

Then, if 5 (Equation (2.16)) is sufficiently small with respect to the material

constants, the total elastic energy of the body U(D) satisfies the inequality

v - san(® [YF)2 + Loy, (1)
where
i) |Ir]l is the L, integral norm of |F] over D,
ii) |ITil is the L, integral norm of IT| over 2D,

iii) g is a sufficiently large positive universal constant, and
iv) B is a constant which depends only upon the physical constants of the

material.
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The rest of Section 3 consists of the proof of this result. Throughout

ot

following, all constants denoted by Ki are universal, while those denoted by T
depend also upon the material constants.

We begin by noting that, because of (2.12), (2.13) and (2.15), and becausc of %ir
fact that the magnitudes and determinants of p, p-l, g, and g-l are uniforml-
bounded, that the integrals over either DR or [ of the expressions Wle),

and 1 are all of the same order of magnitude in the sense that an one

ik ik’ ik%ik
is bounded in terms of any other with the constant depending only upon the material

constants. We also see that

3
i <5 - (

W]
to

We now call attention to the fact that if the deformed body were now subjected %o
any rigid body motion (that is, any combination of translations and rotations), the
magnitude of the strain tensor e at any point as it moves with the body would remain
invariant and so would the magnitude of the stress tensor 1, the strain energy (I,
and the integral norms of the body forces and the surface tractions (cf. [15, pp.
127-123}). Therefore, since all the quantities of interest in (3.1) are unaffected,
we shall assume that a rigid motion has already taken place and has been included in
the mapping from D to DR' The rigid motion has been chosen so that the body is in
what we consider to be a convenient orientation, as will be explained below.

The papers of Fritz John (6], (7], on the relationship between rotation and strain
imply that if the quantity & in (2.16) is sufficiently small, the body may be rigidly
rotated to a position in which an inequality of the following type is valid:

aui aui D3
é][ 3;; 3;; ax dx dx, < K ;3 £ff €18 %, X dx . (3.3)
R R

Such a position is one to which we have referred as convenient in the paragraph above.




We note that the integrand on the right side of (3.3) is invariant under all rrarn -
lations and rxotations while the integrand on the left depends upon the orientaticn oY
the body.

-1
Because of the bounds on p and p =, we also have

/I zﬁi EEL dy.dy.dy. < K Ei [{[e. e ay dy_ dy (3.9

D W v, 17273 -2 3y ikTik "1 f2743¢ :
and, from the remarks in the paragraph preceding (3.2),

., 3ui 3ui D3

Jl!)f §z 3;-}: dy,dy,dy, < K, d— ftl)’f T8 Y, Y4y, (1.5)

from this point on, we shall use dvx, dsx, dvy and dsy to denote differential
volume and surface elements in DR and 0.

From (2.10) and from the fact that Tik is a symmetric tensor, it follows that

Ju,
_ 1
T w3 y f{)f ik 3y, Yy
"
. du. Bui
=L Lg .6
* jéf PrxTix ¥, W, Vo (3.6}

1 un n
+ —-fff p..p 1., =—— z— dv .
2 7y Jlmklkayj ¥y
Using the divergence theorem and noting (2.14), we obtain

féf Tikeikdvy = f%f Fiuidvy + ££ Tiuidsy

2j_aui
Y g .
+ f{)f P’ ik 7y T v, (3.7)

-9~
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Now, we have, from (3.2) and (2.5), that

uL du, a, o M,
iféf ik e e Wy 2 e g I i
i ! 3
w3
~C,f (% —‘,é;j :_v; ;_1 d\ry (3.8)
e
S R S EA
Similarly,
u ¥
‘%fpﬁ%kﬁkgﬁ'wlwﬂzicf %ITufm&Q' (3.9)

Thus, for sufficiently small 3, the sum of the last two terms on the right side

. 1 <
of (3.7) is less than 5 féf ‘ikeikdvy and therefore
1
> fé[ e, < [%f Fiu v+ g£ 7,88, . (3.10)

Since the body is in equilibrium, the surface tractions and body forces satisfy

the consistency relations (see [15], pp. 127-128)

av_ = .
{é 7,45 + jg[ v, =0, (3.11a)
££ (v; T = TS+ f%f (y;Fy = ¥ F v, =0 . {(3.11b)

The first equation above expresses the vanishing of the resultant force, while the
second expresses the vanishing of the resulting moment in the deformed body.
We now define

v, =u, +a,.,y. *+ B, (3.12)

™

where a,. is a real constant anti-symmetric tensor (a,, = -a, .) and . is a
ij ik ki i
constant vector, both of which will be chosen later.

From the relations (3.11) we see that

jé[ Fiuav + gé T;u ds = féf Fyvi@v + {é T,v;48, (3.13)

and then, from the Cauchy-Schwarz inequality, we obtain

-10-
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{ fFiuidvy + ff T,u, ds .

I i FoFLav
1 kY2 P

< 1k , 1}
y = v Lféf Vit (3.14)

13r

+ [ff r.r,as 1 f] v.v.ds &
L i3 it i1 , )
w Y 5o B Y
Combination of (3.14) and (3.10) yields

féf Ty < 2[f£[ FiFidVylf[féf Vividvylf (3.15)

viegs 3
+2 [££ T, 7,48, ] [gé v;v;as 17

We now recall from the statement of the theorem that yini/v ykyk ;_-% on =D
and that the interior of the sphere 2 : Yiyi = fg-d2 is contained in T. DMNext we
refer to the work of Bramble and Payne (1] who proved that if the coefficients Ty
and Bi are chosen such that

- - . = .16
{! v,ds, j (v, - vey;)ds =0, (3.16)
rn
then, for a sufficiently large universal constant ql,
{fv.vas <c d(9)q1 J{f wenav {(3.17a)
17i%%y = Tstlg J v
v D
and
2 0,01 y
J[f v,v.av_ < c.d" () J[] wmav (3.17b)
D iiy— 6 d D y
where
v v
1 i k
9, =5 ([=—+ =) (3.18a)
i i)
ik 2 3yk Y
and
~ 1
= = . .18b
w(8) ueikﬁik + 3 xeiiekk 3 )
The quantities eik and W(9) represent, respectively, the linearized strain and the
corresponding linearized energy density function. We note that
W) < (uw+>Nh, 0. . (3.19)
- 2 ik ik
From (3.12), we see that
n Au
1 ( 1 k
o=z _._.4,_.) , (3.20)
ik 2 ayk 3yi
11~
e ~—




and then, from (3.20) and (2.10),

1 3u, 5ui 1 u \uk 1 -up g
eik=eik'3pmka—le'2_pwi§l;., "7 PPk WL T Vs
m ‘5 R m
g, J1
The elements of pij and "“1 are uniformly bounded and the tensor ——
g
J N
satisfies (3.5). Therefore,
i >
e, 9. av < C — [ff 1 e av , m
—_ 7 ’ 1 \54
) ik ik y d3 D ik ik
and, from (3.19),
o D3
Ww(e)av c, — . 1.2
féf (8) . ¢ 3 féf Tikeikdvy ( 3

With 9 = 9 + 3, Equations (3.23) and (3.17) imply that

9, .
gzj; vyv,ds, cgd( =) jff i irdYy (3.24a)
and
Dy %2+
f%j vividv <% a° (d) IIJ;I Tikeikdvy . (3.24b)
Combining (3.24) with (3.15), we obtain
q2+l q2
/—— Dy 2 Dy 2
f” Tixeikdy £ 27, alz) © el + 2758 (3 ° Il (3.25)
Finally, the remarks in the paragraph preceding (3.2) imply that there exists a
constant C11 such that
ud < ¢y fjj T8 ixy {3.26)

and then (3.25) and (3.26) lead to the desired result, Egquation (3.1).




4. SOME ADDITIONAL REMARKS.

As stated earlier in Section 1, the technigues used here are also applicable to
non-isotropic and non-homogeneous bodies and the restriction here to a homogeneous
isotropic body was only for the purpose of simplifying the presentation. The convexit:’

assumption on P can also be relaxed somewhat; the important thing is that the domain

R
be such that it is possible to obtain an inequality of the form (3.3) by an aprropriate

rotation. (See [6], [7] for a discussion of the factors involved).

ACKNOWLEDGMENT: Part of the research was done at the University of Delaware, Mathematics
Department, Newark, Delaware, during the summer of 1979 and the rest during 1979-1938"0

while on leave of absence at the University of Wisconsin.

-13~-




1.

10.

11.

12,

J. H. Bramble and L. E. Payne, Some inequalitics ¢or vector functions with aprlica-

tions in elasticity. Archive for Rational Mechanics and Analvsis 11, 1& (19€2),

S. Breuer and J. J. Roseman, Integral bounds on the strain enerqgy for the traction

problem in finite elasticity. Archive for Rational Mechanics and Analysis 68,
333 (1978).
J. J. Stoker, Topics in Nonlinear Elasticity. New York University, Courant Institute

of Mathematical Sciences Lecture Notes (1964).

V. V. Novozhilov, Theory of Elasticity (translated by J. K. Lusher). Pergamon

Press (1961).
F. John, A priori estimates, geometric effects and asymptotic behavior. Bulletin

of the American Mathematical Society 81, 1013 (1975).

F. John, Rotation and strain. Comm. Pure Appl. MHath. 14, 391 (1961).

F. John, Bounds for deformations in terms of average strains, in Inegualities, III

(Edited by O. Shisha), p. 129, Academic Press (1972).
J. H. Bramble and L. E. Payne, A priori bounds in the first boundary value problem

in elasticity. J. of Research of the National Bureau of Standards, Section B 65B,

269 (1961).

A. Dou, Upper estimate of the potential elastic energy of a cylinder. Comm. Pure
Appl. Math. 19, 83 (1966).

A. Gutierrez, A bound on the elastic potential energy of a cylinder with square

cross-section. Rev. Real Acad. Ci. Exact. Pis., Natur. Madrid 70, 549 (1976).

M. Aron and J. J. Roseman, Integral estimates for the displacement and strain energy

in nonlinear elasticity in terms of the body force. International J. of Eng. Science

15, 317 (1977).
S. Breuer and J. J. Roseman, A bound on the strain energy for the traction problem
in finite elasticity with localized non-zero surface data. J. of Elasticity, to

appear.

-14-

-
8 ol




13. S. Breuer and J. J. Roseman, An integral bound for the strain energy in nonlinear
elasticity in terms of the boundary displacements. J. of Elasticity 9, 21 (1979)

14. J. J. Roseman, Integral bounds for the strain energy in terms of surface tractions
or displacements and body forces in finite elastostatics, in Transactions of the
25th Conference of Army Mathematicians, ARO Report 80-1, p. 447, U. sS. Army
Research Office, North Carolina (1980).

15. C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, in Handbuch
der Physik, III/3, p. 1, Springer-Verlag (1965).

JJR:ed

«]15~




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

—————— ——

READ INSTRUCTIONS
\ T REPORT NUWBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALGG NUMBER
2060
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific

reporting period
6. PERFORMING ORG. REPORT NUMBER

AN INTEGRAL BOUND ON THE STRAIN ENERGY FOR THE
TRACTION PROBLEM IN NONLINEAR ELASTICITY WITH
SMALL STRAINS

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(S)
N DAAG29-76~G-0102
Joseph J. Roseman DAAG29-75-C-0024
DAAG29-80~C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. i:OCASR‘A:OERLEMENTT. PR.‘OBJEE;_ST, TASK
Mathematics Research Center, University of EA & WORK UNIT NU
610 Walnut Street Wisconsin Pw';lr’giggitm“t“mhzem;tic;
s Madison, Wisconsin 53706 Y
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office April 1980
P.O. Box 12211 13. NUMBER OF PAGES
Research Triangle Park., North Carolina 27709 15
14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 15. SECURITY CL ASS. (of this report)
UNCLASSIFIED
158, DECLASSIFICATION' DOWNGRADING
SCHEOULE

16. DISTR BUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

¥7. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, if difterent irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceseary and identify by block number)

Nonlinear elastostatics, strain energy bound

20. ABSTRACT (Continue on reverse side i necessary and identify by block number)

For the traction boundary value problem in nonlinear elastostatics for a
. body which is convex in its undeformed reference state and with the assumption
of sufficiently small strains (but not necessarily small displacement gradients),
an upper bound is obtained for the elastic strain energy in terms of the Ly~
integral norms of the surface tractions and body forces with the constant
depending only upon the ratio of the outer and inner diameters and the physical

constants of the material. : .
{continue:l)

DD "o’y 1473  coimiun oF 1 nOV 6313 ORSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date l-l-ltm

+

T R Y —ppr—




ABSTRACT (continued)

This result extends previous known results in linear elasticity (infinitesimal
displacement gradients) and finite elasticity (small but finite displacement
gradients) into the small strain theory of nonlinear elasticity.




